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Abstract

Conditions are given for uniqueness of limit cycles for autonomous

equations in the plane. The results are applicable to codimension two

bifurcations near equilibrium points for vector fields.
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§1. INTRODUCTION

dConsider a system of autonomous differential equations in R

d > 2, or in some infinite dimensional space. Suppose that there exists

an equilibrium point which is non-hyperbolic and is doubly degenerate.

In other words, it is a codimensional two singularity. More specifically,

we assume that the linear variational equation in the center manifold

has one of the following linear parts

A2=L- 0

0 0 0

0 1 0 0

-1 0 0 0
A3

0 0 0

0 0 -W 0

For more detail, see Arnold [1,2], Carr [8], Chow and Hale [9] and

Guckenheimer and Holmes [11].

The classification of vector fields near a singularity of type A

$for generic perturbations can be found in Arnold [1], Bogdanov [3,4,5],

and, for symmetric perturbations, in Carr [81 and Takens [14]. Such

classification is not simple. The main difficulty is to prove the

uniqueness of the limit cycle. It is usually proved by using proper-

ties of elliptic integrals depending on a parameter (see Arnold [1],
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Bogdanov [1,2,3], Carr [8], Chow and Hale [9], and Guckenheimer and

Holmes [11) and is related to the weakened Hilbert 16th problem

(Arnold [1], p. 303). In [12,13], Iljasenko showed that these

properties of elliptic integrals could also be obtained by methods in

algebraic geometry.

The classification of vector fields near a singularity of

type A2 or A3 is far from being complete. Since the dimension of the

system is >3, many new types of dynamical behavior can occur. The

first step in any attempt at classification is to put the equations

in normal form and then try to classify the truncated equations; namely,

the normal form equations up through polynomials of degree < k for

some fixed integer k. Because of the nature of the linear parts

A2 or A3P these equations are very symmetrical and the flow can be

reduced to a polynomial equation in the plane. It is this polynomial

equation which is the subject of this paper. For this equation, the

existence and number of periodic orbits plays a fundamental role in

the classification.

Most of the paper is concerned with the case A In Section 2,

for the case A2 we show how one obtains the relevant equation in the

plane and point out that the bifurcation diagram is easy to obtain

everywhere except in the neighborhood of one point for which the

unperturbed equation is Hamiltonian. The discussion of period orbits

reduces to the consideration of the monotonicity properties of a

certain function which is the ratio of Abelian type integrals. For

certain values of the parameter, these are Abelian integrals and one

can analyze this function by using methods from the theory of analytic

-AM3
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functions and algebraic geometry. In Section 3, we discuss a case of

this type and show periodic orbits are unique. The method of proof

follows earlier ideas used by Carr [8]. Cushman and Sanders [10] also

have discussed this case and have shown very clearly the connections

with the Picard-Fuchs theory of Abelian integrals. Bogdanov presented

this result in [4] with a different proof. Arnold [1] states that the

method of Il'yashenko [12,13] can be applied also to this case.

In Section 4, by using a more analytic proof, we show uniqueness

in case A2 for situations where the algebraic methods do not seem to

be applicable.

In Section 5, we derive the bifurcation function for case A3

and special values of the parameters. The general case is still open.

Numerical evidence indicates uniqueness of the periodic orbit.

§2. NORMAL FORMS AND BIFURCATIONS

In this section, we suppose that we have a singularity of type A2.

In order to classify the behavior of vector fields near such a singu-

larity, consider the equation in R

u Au + F(u)

where u E IR3 ,

4 1 0l-

A A 1 a 0
0 0 

a, B E JR are small parameters, F = 0(Iu12), as lul - 0, and is

smooth. By introducing cylindrical coordinates,

r



u1 =r cos 6

u 2 =r sin 0

U 3 =S

and applying the theory of normal forms (method of averaging) (see,

for example, [9]), one may assume without loss of generality that

our differential system near u = 0 has the form

= 1 + fk(r ,s,a,8) + O(k + 1)/r

= rgk(r ,s,a,a) + O(k + 1)

s = hk(r ,s,a,8) + O(k + 1)

where fk(0'0'0) = gk( 0 ,0,0 ) = hk(O,O,O) = Dhk(O,O,O)/as = 0, the

functions fk,rgk hk are polynomials in r, z, a, 8, of degree

< k and O(k + 1) denotes terms which have order k + 1 uniformly

in e.

One important observation about these equations is that the terms

up through order k are independent of 0 and that the equations

truncated up through order k always have the manifold r = 0 in-

variant under the flow.

An attempt to analyze the above equations consists of the follow-

ing steps. First, ignore the terms of order k + 1 and analyze the

truncated equations completely. Since the truncated equations are in-

dependent of 0, one can replace the time variable by 0 and obtain

an equation in the plane. Because the truncated equations correspond

to a planar system, periodic orbits play a major role in the discussion

of the flow for a,8 parameters varying in a neighborhood of zero.



-5-

For k = 3, we will give below a complete discussion of the periodic

orbits.

The next step in the analysis is to discuss the effect of pertur-

bation terms O(k + 1). These terms depend upon 6 and also may not

possess the symmetry properties in r that the truncated equations

possess. This creates significant difficulties. A complete solution

to the complete equations is not available at this time. We do not

discuss this problem, but mention only that significant progress has

been made by Broer [6], Broer and Vetger [7].

If we truncate the equations, replace t by 0 and keep only

terms up through the third degree, we obtain the system

r' = r(a + as + dr
2 + es2)

s = S+ s 2 + r 2 + Tr2 + -s
= S +gs

where "'" = d/dO and a, b, c, j, e, f, g are fixed constants.

The terms neglected from the truncated equations can be shown to be

insignificant (see [9]).

To obtain a simpler form for these equations we rescale the

variables by letting

r= Is x

6 t

e= _1iI tIHI

CI = -Ot
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to obtain the following:

x = ax + Bxy + dx + exy

=-->2 32
= iy -y _ (sgnbc)x2 + ix2y + gy

where B = -a/b and d, e, f, g are constants.

For the case where B # 0, b c < 0, the bifurcation diagram in the

(a,i) plane is easy to obtain and qualitatively does not depend upon

the cubic terms. The bifurcations consist of elementary bifurcations

of equilibrium points. For the complete equation, this means only

Hopf bifurcations and the coalescing of periodic orbits. For a complete

discussion, see [9].

The most interesting case is when bc > 0. It is convenient to

introduce a change of variables. Choose y close to /2 so that
6 - 2y + 3d4 Y 2 = 0 and the transformation y I- y + y together with a

rescaling of x,y leads to the more symmetric form

~ dl3 d2Y

x = ax + Bxy + d1x + d2xy
2 2 2 3

2 - y  - x + d3 x y + d4 y

where we keep the same labeling for the constants, even though they are

not exactly equal.

If we perform the scalings

-1x -1 Cx, y -+ cy, B - e a - CX, t C

the new equations become

= Xx + Bxy + 3[d1x3 + d2xY2

(2.1)
1 2 2 2 3y = - y - x + E[d 3x y + d4  3

and are in normal form.

p

I I i iI II. . . . .. . . .II I l i l
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Equation (2.1) must be discussed for all x > 0, yC ] R, X E IR,

B IR, and c in a neighborhood of c = 0.

In the following, we assume B > 0.

a Let us first discuss equation (2.1) for c = 0; that is, the

equation

x = Ax + Bxy

* 1 2 2
y T - y - x

There are always two equilibrium solutions (0, 1/2). The equilibrium

point (0,1/2) is a hyperbolic stable node if X < -B/2 and a saddle

point if X > -B/2. The point (0,-1/2) is a saddle point if A < B/2

and a hyperbolic unstable node if X > B/2. If X2 < B2/4, there are

other equilibrium points, (±(1/4 - X2 /B2) I/2 , - X/B). At the values

X = *B/2, there is a bifurcation of an equilibrium point into three

equilibria, each of which is hyperbolic. This bifurcation still remains

when c # 0 is small. The equilibrium point (±(1/4 - X2 /B2 )/2 -X/B)

changes its stability properties at A = 0, being a stable focus for

A > 0 and an unstable focus for X < 0. The point A = 0 thus becomes

another place where bifurcations can occur.

It remains to analyze the behavior of the solutions of (2.1) for

X = 0, c = 0. For X = 0, c = 0; that is, the equation

(2.x = Bxy

(2.2)

1 2 2
4 -x

there is a first integral
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H B q+l 1ql2 x+
(2.3) H = B + q+ly IB

where 1+q = 2/B.

The fact that (2.1) for =E = 0 has a first integral implies

that cubic terms are necessary to resolve the complete bifurcation

diagram near A = c = 0. To obtain this bifurcation diagram, one must

discuss the periodic orbits of (2.1) for (X,c) small. The first

integral of (2.2) is very useful in such an analysis. Let us briefly

indicate how this is done.

It is convenient to reparametrize the orbits by replacing t by

xqt to obtain the system

x= q [Ax + Bxy + (dlX3 + d2xy2)]

(2.4)

xq[- - X - y2 + E(d 3 x 2y + d y)]

The derivative of H along the solutions of (2.4) satisfies

(2.5) dH = yxq+lX+ y(dlx3 + d xy2)x q _ E'(dx 2y + d4 y3 )xq
1 23 4

It is not difficult to see (Carr [8 ]) that a necessary and

sufficient condition for an orbit r F(X,e) of (2.1) to be periodic

in that

(2.6) Jfdt = 0

Using (2.5) and (2.6), one obtains a bifurcation function for periodic

orbits which involves Abelian integrals. (See Sections 3,4 and

Appendices AB). It is then shown that the number of periodic orbits

II
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is then reduced to the discussion of the monotonicity properties of a

scalar valued function which is the ratio of two Abeli integrals.

Under the assumption that B = 2, d1 = 1, d2 = d3 = d = 0 and by

assuming the monotonicity of the above function, the complete bifur-

cation has been obtained (see, for example, Chow and Hale [9]).

In the following section, we will give a proof of this monotonicity

* Ihypothesis. Thus, this completes the bifurcation diagram for equation

(2.1) with B = 2, d1 = 1, d2 = d3 = d4 = 0. In Section 4, the case

B > 1/2 will be considered. The problem of monotonicity is still

open for 0 < B < 1/2. In Appendices A, B, we show that the results

obtained are still valid for arbitrary but fixed values of the d.

not lying on a hyperplane in (dl,d 2,d ,d4 ) space. Note that this is

not surprising because, on a Riemann surface of finite genus, there are

only a fixed number, depending on the genus, of linearly independent

holomorphic differentials.

§3. UNIQUENESS THEOREM FOR B = 2

Consider the equation

X= x + 2xy + Ex
3

(3.1)

which is equation (2.1) with B = 2, d= 1, d2  d3  d 4  0. Let

, 3H =T-xy --

When X = E = 0, (3.1) is a Hamiltonian system with the Hamiltonian

H. Thus, solutions of (3.1) with X = c = 0 are parametrized by

H = c or

(3.2) xy2  x x(3.2) =T-T--c
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where c E IR. We note that c 0 corresponds to the heteroclinic

orbit, c = 1/12 corresponds to the fixed point (1/2,0) while

0 < c < 1/12 corresponds to a periodic orbit.

As remarked in the previous section, a necessary and sufficient

condition for an orbit r = r(X,c) of (3.1) to be periodic is that

f Hdt =0

or

0 = y(Xx + Ex )dt
0

T2-
= -y(X X + ScX x)dt

0

where T > 0 is the minimal period of the periodic orbit r(X,E). By

using the above equation and letting A = 3ep, one obtains a bifurcation

function G(p,c,c) for periodic orbits which for E = 0 is given by

1
G(p,O,c) = iJo(c) + J2 (c) , 0 < c < 12

where a

(3.2) J1o(C) =f ydx
a1

(3.3) J2 (c) : 2 ydx

2 f a / 2
1 2 11

Y + 4 3 C)

and 0 < a < 1/2 and 1/2 < a2 < v5/2 are the two real positive roots

of the equation
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I x 2  c

4 3 x 0

for 0 < c < 1/12. Let

(3.4) P(c) J2 c) 0 < c < 1/12J0(c)
0

It is shown in [ 9] that, if P'(c) J 0, then equation (2.1) has

a unique asymptotically stable limit cycle for appropriate values of

(X,c) j (0,0). Our main result in this section is the following.

Theorem 3.1 Let P(c) be defined as above. We have P'(c) > 0

for 0 < c < 1/12.

To prove this, let c1 = a I, c2 = a2 and

2 6 )1/2 < w
(3.5) R(w) - c - , 0 w - 2

Define

(3.6) I 2 w 2nR(w)dw.
61n 

Cl

2

By setting w = x and using (3.2), (3.3), we have

21 2 =J 2 20 0 < c < 1

ence, 12(c) c< I

(3.7) P(c) =<

0 
12

We will use (3.7) to show Theorem 3.1.

Lemma 3.2
2n d

IA(c) 2 R-dw

n fI
' i'
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Proof. From (3.5), 2RdR/dc -1.

Lemma 3.3

1 4
c ~c

Proof.
1 2(c)

lim P(c) = 1rn
C-I-I 10I(e

-12

Lemma 3.4

3
im P(c) 1"6

C-O0

Proof. Integration.

Lemma 3.5 Let I(c) be the column vector (I0,1,I2). Then

I(c) satisfies the differential equation

(3.8) 1(c) = A(c) I'(c)

where

3 1 02-c -4a 0

A(c)= 0 c 6

3 C 3 3¢
32 64 4C

and

*
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A =det A(c) ( I )c

Proof. Let us first prove that 10 (c) = 3cI;(c)/2 - I(c)/4. From

the relation

2R dR = w- 2w5

it follows that, as differential forms,

R2

Rdw = - dw

Rw 13 d2 4  1

RRd [1 2

:T -d R +w 4 T 4

1-w 1
3d R 16 w J

Integration by parts yields

Io(c) - c - . Il (c) 2c;(c)

which is the desired relation. Let us now shown that

61 = 6c - I'61 6c1 12

By the definition of I and by integration by parts, we have

c2(
= Tc

fC2 ( w- - w )

= 3 2 R

IC
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Hence,Sf'2 8 dw fc2(4 2dw T T- _ cw2  '

3 1 c R C1 3R

so that

I = 2  _= I- 2
1J12 21R 1 6

:' tFinally, we show that
64 12 = 6c I -3 1' 48 cI2'

Using the definition and integration by parts, one obtains

C 2( w10 6) dw
I2 = c 1 5 20 R

22 w w dw

= CR dw .
c1 R

Hence,

81 fC 2 wlOdw_= f(-w6 - cw4) dw

-1

so that

1 2 ( w - 3cw 4 )divi 2 = i16 - 8 R

A similar argument on 10 yields

f w6 d f 2 3( _2

R =  4\2/-R
-cI "cIT 2R

Combining the above two equations, we obtain
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161 = f' 2  3 w
2  3c 6c4)dw

which is the desired formula for 12* This proves the lemma.

Lemma 3.5 is known as the Picard-Fuchs equation for the integrals

IOI1 I2 and corresponds to Eq. (26) in Cushman and Sanders [10].

Lemma 3.6

(3.9) L~L 1 1_.4C2 c2J Lj

Proof. By (3.8), I" (c) A1 (c)(E - A'(c))I'(c) where E denotes

the identity matrix. We have

3 2 1 3 1Tc - .12"--f6c 2-4

1 1 9 2 1
A 1 (c) =g C~ T c

A 644

3a2 33 42
T2c32 2

and
1

0 0

E - A'(c) 0 0 0

3 1

Equation (3.9) follows from the above matrix equation.

11I
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Lemma 3.7 Let

Q(c) = I0(c)
0

Then,

(3.10) Q= _ [-c 2 + 6c2Q 1Q21

Proof. (3.10) follows from (3.9).

Equation (3.10) corresponds to the Ricatti equation of Cushman and

Sanders [10].

1Lemma 3.8 If 0 < c <-- QE€ R, then

1 [-43c + 6c 2Q - Q2] > 0

Proof. The maximum of the quadratic form

_3c 2 + 6c2Q _ Q2

21

occurs at Q = 36c and its maximal value is

2( - 144c 2 )c2 .

1

Since 0 < c < 2 and 6 < 0 (Lemma 3.5), we have the desired result.

1 1
Lemma 3.9 If P'(c O) 0 for some 0 < co < , then P"(c O) 4 0.

Proof. By the definitions of P and Q, we have

IP + I = I

l"P + 21 P' + IP" fi
0 0 0 2

iI



-17-

I6Q = I

3Q + 1

Since P'(co) = 0, we have P"(co) = I (c0 )Q'(c 0)/I0 (c0 ). By (3.6)

and Lemma 3.2, 10(c) > 0, l6(co) < 0. By Lemmas 3.7 and 3.8,

Q'(c) > 0. This implies P"(co) < 0.

Lemma 3.10 If P'(co) 0 for some 0 < co < - then
S0 12

3< P(c O) < I
16 4

Proof. By the first and last equations in (3.8),

310 - 1612 = 3cI - 121

If P'(c O) = 0, then, by the above equation,

3 3 I (c)
3- P(c 0 ) = c - (1 - 4P(c0 ))1 0 (c)

because I o)= )(co). Since 11(co) < 0, P(c O ) - has

I'(cO) =P(co)1(o.I( 0  ~ 0  16
1 3

the same sign as - P(c0 ), i.e., we must have -L < P(co) <

Proof of Theorem 3.1

It follows easily from Lemmas 3.3, 3.4, 3.9 and 3.10.

§4. UNIQUENESS THEOREM FOR B > 1
21

In this section, we consider the general case B >1 d :1,

d2 = d = d = 0. From (2.1) the normal form is

= Ax + Bxy + cx
3

(4.1) 1 2 2
Y-y

* _ _ _ _ _ _



-18-

We note that the notations used in this section will be similar to

those in §3. This will not cause any confusion. In fact, if we let

B = 2, then both notations will coincide. However, the proofs of

monotonicity in §3 and this section are different. The main reason

to include the proof in §3 in this paper is to show that, for B = 2,

one may be able to use complex variable topological arguments as in

[10,12,13] to prove Theorem 3.1, while it does not seem likely in the

present case.

Let
2

(4.2) 1 + q =

Changing time scales, we obtain the following normal form

* q 3
x= xq(x + Bxy + cx )

(4.3)
q 2 2

xq( x _ y2)

Let 3
Hq+ xq+3

(4.4) H = y(xq+lX + cxq + 3 )

Let cp = X. As in §3, we obtain, for periodic solutions of (4.3),

a bifurcation function G(p,c,c,B) which for e = 0 is given by

G(p,O,c,B) = (q+l)viJ 0 (c,B) + (q+3)J2 (c,B), 0 < c < c m,

where

* *



19-

(4.5) Cm = C(B) )q+ 4(+B)

J 0(cB) = 2a xqydx
fa

c 2 (cB) = a w +2 o dx

( +B q+l

11and 0 <a 1 7 a are the zeros of y. We note that c=0

corresponds to the heteroclinic orbit in equation (4.1) (with C A =0)

while c (B) corresponds to the fixed point (!' 0) in equation (4.1)
m2

with c = X = 0. Let

P(c,B) = J2 (c,B) , 0 < c < C (B)
0 (c,B)

As in §3, let
B B

cB = al, c2 = a2  and

1 2__ 2

(4.6) R(w) =4 w 2B2 - ), 0 < c < c

Note that R(c1) = R(c2) = 0 and 0 < c I < c2. Define

(4.7) I (c,B) = 1 wnBR(w)dw, n = 0,1,2,...

We have

V,(c,B)
(4.8) P(c,B) 1 0 (c,B)

K. ____________________2_____)

--
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Theorem 4.1 If B > and 0 < c < c, then

-_ (c,B) > 0

By using this theorem, it will be possible to obtain a complete

bifurcation diagram for equation (4.1) by following the methods in

Chow and Hale [9]. We leave the details to the reader.

The following are needed for the proof of Theorem 4.1.

Lemma 4.2 For n = 0,1,2,

___c 1 fC2 nB
(49)@1n (c,B) I 1c 'n w

n39- mw- dw .

Proof. Since

2 2 2B+2R2 w~ w
R 4 B+1

we have

2RR' : -1

where " " =3/c"

Lemma 4.3 Let

C C(B) lim P(c,B), n = n(B) = lim P(c,B)

c-O c-+c m

Then
B+I

= 2(3B+2) 4 =

Proof. By (4.2), (4.6), (4.7) and (4.8), we have (x = wB

,. ~-- .. l__
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12 (0, B)

1 0 (0,B)

2 q(1 4x2) dX

aI1 B+--l d

where a1 = 0 and a2 = B/ T/2. Hence,

B+I rr/2 e~ 2 o~J (sin d)q+2cos2 dO4 f0

J (sin e)qco dO

B+1

2(3B+2)

Next,

312
3- 2 (c,B) 

1
n = Jim a

SC *Cm 1 0 4

"-- (c,B)

This completes the proof.

We are not able to find a differential equation like (3.8) for

the integrals 1o(c,B), 11 (c,B) and 12(c,B). It seems this is possible

when B is an integer. Such equations for B = 1 could be found in

Carr [8] (Lemma 4 in Chapter 4).

Define

C2 w2Rww
(4.10) S(c,B) = 1 w2RJw)dw

'II

*1-{'" -
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Note that I I(c,2) =S(c,2). Hence, the case B =2 in §3 gives a

check on some of the following formulae.

Lemma 4.4 The following equations are satisfied by 109 S, 1 2

(4.11)I I I 2(B+2) 0

#2

where ~ '="D/Dc", 0 < c < cm

10

4= 11 2(3B+2) and

B+1~

[2(B+ 11 0
= 2 4B+2)Bnd

- 4

Proof. Integrating by parts,

= fc2(w2 
2B+2 

dw

c1

c2 wc2 R

c I

fc2( 2B+2  
w 2 ) dw

c1R

* _ _ _ _ _
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Hence,

IB-2r2B+2 C / 2 dw
B+ 2 1 R(w) dw = J 5 - c) R

The first equation in (4.11) follows from the above equation. The

second equation in (4.11) is obtained similarly.

Lemma 4.5 For 0 < c < c

(4. 12) = L + S

where 6 = B/8c(B+1).

Proof. This is obtained by differentiating (4.11).

Lemma 4.6 For 0 < c < c

m

(4.13) Q= Q[(l 4Q) 2+ 166Q]
12

where
i B

Q and 6= B
0 8c(B+l)

Proof. This follows from (4.12)

Lemma 4.7 If P'(coB) = 0 for some 0 < c0 < Cm, then

P(co,B) = Q(co,B) and P"(co,B) has the opposite sign as Q'(co,B).

i
(i Proof. See the proof of Lemma 3.9.
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Lemma 4.8 If P'(coB) 0 for some 0 < c 0 < Cm) then

4cCI'2(c0'B)[](4.14) P(cO B) - = : P(c o B) -

1 2 (CoB) ' -

where C is given by Lemma 4.3.

Proof. At c = co, I1(co,B) = P(coB)I;(co,B) since 1 PI
20 0002 0I'

we obtain (4.14) from the second equation in (4.11) by substituting

the above values of P(coB).

Lemma 4.9 For 0 < c < cm

1
(4.15) < P(c,B) < 1

1

Proof. If not, then we have either P(coB) > or < for

some 0 < c0 < cm. By Lemma 4.3, we may assume that P'(c O B) = 0.

Since I 2 > 0 and I' < 0, this contradicts (4.14).Si 2 > n 2

Lemma 4.10 If P'(coB) = 0, 0 < c0 < cm , then P"(coB) has

the same sign as the following expression evaluated at (coB)

(4.16) 4c + Q(I _ Q)-I - I,

0 2 T 4 1 B 2

Proof. By Lemma 4.7, P"(coB) has the sign opposite to

Q'(coB) and P(coB) = Q(coB). By Lemma 4.9 and (4.13), P"(co,B)

has the sign opposite to the following expression evaluated at

(co, B) : I',

ic ) (I1- 4Q) 2 + 166Q

T2

[; 2
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Since < 0 and Q(coB) < , the result follows, from the

definition of 6.

Lemma 4.11 If P'(coB) = 0, 0 < c0 < cm , then P"(coB) has

the same sign as the following expression evaluated at (coB)

(4.17) 4co1l + 41' 2
02 12

Proof. Let P'(coB) = 0. Using (4.14), we have, for c = CO,

-l / 2 - 0 1 2 _ _

-P) 

)-2 4

Substituting the above equation into (4.16), we obtain the desired re-

sult.

The proof of Theorem 4.1 will be given in the same spirit as before

(Theorem 3.1), i.e., we will show that if P'(coB) = 0, then P"(coB) > 0.

Thus, we have to estimate very carefully the sign of the expression (4.17).

To begin, define
2 2B+2

r(w) = w wB.4 + I 1

i.e., r(w) R (w). Let

1-2 -2B+2
W =w-19 and r= r(w) w wc2 2 B+I

Note that r(w) - r is independent of c and 3r(w)/Dw = 0. Define

(4.18) J2(c,B) 2 w2B(r(w) [r(w)] dw

C1

_ _ _ -1 ..--- - -
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where c1  and c2  are as in (4.7)

Lemma 4.12 Let

f(w) = (r(w) r) (2 r 4B ar ) ( r)2
aw 2  w aw - w

Then

(4. 19) -4rIl 2 w f(w)- dw

Proof. Note that w is independent of c and er/ac = -1. By

(4.18),

Irc 2  2B rw -)
(4.20) J 2 J - [r(w)] dw

1
-I -rI'

Also,

2 f c 2 w2B (r(w)- r) dr 3 /2(w))(4.21) J 2 =3 d (r (w))

Note that ar/aw has a simple zero at w = w while the factor r(w) - r

has a double zero at w = w. Thus, the following calculations are valid.

From (4.21),

J2 = - 2 2 w 2Br3/2](w) dw

where

7
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f2B 3r adr (r ~r(4.22) gw w w2) -r - r -

Note that g(w) does not depend on c. By differentiating the above

equation with respect to c,

i

- 2 +12 B r

2 2 w2Bg(w) dw

( Ir
2 -2

because of (4.20). Thus,

I+ r

2 1 2 2

I c 22B (V

[r(w) - dw

Finally, using (4.9), i.e. 
B ( ) 2Sw i-

21.- "2 >  dw

We obtain (4.19) and that f(w) a(r/dw) 2 2g(w).

Lemma 4.13 We have

2r 11
(4.23) - 2> 1

Proof. Recall that F=r(-W) and that ar(*W)/aw =0. Thus T

is the maximum of r(w). From (4.20),
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I - > 0

2 2

Since 12 > 0, the result follows.

1

Lemma 4.14 If B > - and P'(coB) = 0, then P"(coB) > 0.

Proof. Using (4.23) in Lemma 4.11, it is sufficient to show that

* the following expression

4c rI, + (4r + 2cO )I0 20

is negative when it is evaluated at (coB). By Lemma 4.12, it is

sufficient to prove that

h(w) cof(w) + (2r + co) (ar/3w) > 0

for all c1 < w < c 2. Since 2B > 1 and c1 >0 ,

a2r 4B ar

aw2 w w

=1- 2B 4w2  <, c< w 2

By (4.22),

h(w) = C0 (r(w) r) (1- 2B - 4w
2B) + 2r(3r/aw)2

Since r(w) - r < 0 and r > 0, we have that h(w) > 0 for

c < w < c2. The result follows.

Proof of Theorem 4.1 It follows from Lemma 4.9 and Lemma 4.14.

* '
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§S. BIFURCATION FUNCTION

Consider a singularity of type A in the Introduction. This

leads to the following equation in R

(5.1) v = Av + G(v)

where v E R
4

a 1 0 0

- a 0 0
A=

0 0 B

0 0 - 0 B

a,a E R are small parameters, w E R, G is smooth and is of higher

order at v = 0. If

v1 = r Cos e1, v2 = -r sin 61

V3  r2 Cos 02, v4 = -r2 sin e2

then (5.1) is equivalent to the following equations

;l = ar + Rl(e1,%22rl'r2)

2 = 6r2 + R2 (01 e2',rl1r2)

(5.2) 1 1 + {e, 2 rl9 r2)

2= w +0(' 10 2 rl'r2)

where each function is 2n-periodic in 01 and 62. Assuming certain

nonresonance conditions on w and symmetric conditions on G(v), one

can apply the method of averaging to (5.2) to obtain the following

l'
'I ______
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equations

r1(c - -2 -2 +

ar 1  br 2)

r = r 2 ( + -r2 + ar2 +
2 2 cr1  r2

=1+...

2

where higher order terms are just indicated by the dots and a,b,c,d

are constants.

As in §2, this leads to the consideration of the following equation

in the plane
b+l. 2  x3 _X+ 5
b - b- x x + cx5

(5.3)
=Y -Y + cx2y + y

for x > 0, y > 0, where X,c are small parameters b, c are constants.

Details may be found in Chow and Hale [9].

For the analysis of (5.3) the main question concerns the existence

and number of limit cycles of (5.3) for (X,c) # (0,0) near the origin.

It will be shown that this is again related to the monotonicity of a

scalar valued function. To do this, we must derive the bifurcation

equation.

By scaling time t 4 2px2p-1 y and writing

2(4.1) ['1

I
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so that (5.3) yields

2p
1  2 3

S2px2P - y(-x - bx) x )

2p p

(5.4) + x2p-y(X x + E1X
5)

y 2px2p-1y(-y + -x2y + y3

where

c+l l+b
5- ' =bc-

For E= = 0, the equation (5.4) has a first integral. This

can be used to obtain the bifurcation function for periodic orbits.

We have not been able to analyze completely the bifurcation function

for this case. There seem to be regions in the (b,c)-parameter space

where there is only one periodic orbit and other regions where there

are more than one periodic orbit. Therefore, to illustrate non-

uniqueness, we assume in the remainder of this section that T = 1,

p > 0. These relations are equivalent to b = 2/(c - 1), c > 1. Notice

that this implies that b c > 1.

If one defines

H = x2py
2 [l _ y2 _ px

2]

then (5.4) can be simplified as follows:

H3H + x2p-ly(x + ClxS5

(5.5)

y T-x
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For A, = = 0, we have the following Hamiltonian system:

9H

(5.6)
aH

y

Integral curves of (5.6) are given by the level curves H = c, i.e.,

H = x2py2 x2py4 _ px2p+2 2 c
2

where c E ]R. Solving for y , we get

2

(5.7) Y+ - 2
=2 2

where
(5.8) k(x) (px2 21)2 cx

Let

(5.9) w = x2 , j(w) = k(x)

We now relate this to the periodic orbits of (5.6). Let

0 < w1 < W2 be the zeros of j(w). As w varies from w to w2P

2
Y+ (given by (5.7) with the plus sign) goes through half of the

periodic orbit H = c which is above the line defined by:

(5.10) t: 2y2 = 1 - px2

in the x2 y 2-plane (or wy 2plane). This is illustrated in Figure 5.1.

We use this to get the bifurcation equation for periodic solutions

of (5.5) when (XlC 1) ( (0,0). By differentiating along solutions

of (5.5), we have
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y2

i 2y 2 = I-px
I w

II W

Fig. S. 1

dH = 2p-ly(xlx + elX5 aH
dt I X

= - () x + Cix5) x 2p- 1

Integrating by parts from time t1  to time t ,
2

H(x(t 2 ),y(t 2 )) H(x(t 1) ,Y(tl))

(XlX+ Clx 5 )x2p- 1  t2 2
ti

+x(t 2 ) y2(x) [2pXX2p-1 + (2p + 4)x 2p 3 dx

2 11
X(t 1 )

t + x(t 2 )
L(x,y) 2 M(x,y)dx, say.

tl x(t 1 )

Let t1 = 0. Assume (x(O),y(O)) is on the line Z defined in

I +.
(5.10). Let t2 > 0 (t2 < 0) be the first forward (backward) time that

the periodic orbit (x(t),y(t)) meets the line 1. Hence,
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H(x(t2),y(t")) - H(x(O),y(O))

= L(x,y+) 2 + 2 M(x,y+)dx
- 0 fx(0) -

+ O(IX 1 + ell2

where y+ is given by (5.7). Thus, periodicity of (x(t),y(t)), i.e.,

H(x(t2),y(t2)) = H(x(t2 ),y(t 2 )), is equivalent to

2X 2

5x(t.)1 M(x,y+)dx = xt2)M(x,y_)dx
x(O) 'x(O)

+ o(lxI + E l2

By (5.7) and,by using the correct signs, (5.10) is equivalent to the

following:

0 = v(X) [2pXlx2pl1 + E I(2p + 4)x2p+3]I dx

+ O(Ix 1  + E12)

where x1 = x(0) and x2 = x(t+) = x(t). Let X1 =C 1 . By
2 21 1 1

dividing the above equation by el, we obtain the bifurcation equation

0 =g(Ul, lc)

=X2 v(Tx) [2p1 x2p- 
+ (2p + 4 )x2p+3 dx

+ OCIEI)

I

-* - * .
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By (5.8) and (5.9), 3

.11
(5.11) G(vlO,c)

1 2ViPW 2 (p + 2)w 2  R(w)dw

2 Wl

* Iwhere

2
(5.12) R(w) = [wP(pw - 1) - 4c]

Define J w2 R-l+2n
Sn(c) = w2  R(w)dw, n = 0,1

wI

Consider the function J (C)
(5.13) Y(c) Jo(c)

0(c

We summarize the above discussion into the following.

Theorem 5.1 If (Xl,1 l) is sufficiently small, then every periodic

orbit of (5.5) must intersect the line k defined by (5.10) with

0 < x2 < 1/2+p. Furthermore, there exists a smooth function V*(El,c)

such that a necessary and sufficient condition for (x(t),y(t)) to be

a periodic solution of (5.5) with (x(0),y(0)) E 2, 0 < x 2(0) < 1/2+p,

H(x(O),y(O)) = c, is that v= V(El'c), where XI = €i " Further-
1 ~ 1 1

more,
. ,(o,c) = -Y(c) p - 2

1 p

To discuss the behavior of the function Y(c) as a function

of c, observe that the range of values of c is [O,c*] where

c* > 0 and

_____
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(5.14) w1 ( 0 ) = %O w2 (0) = -
p

(5.15) w (c*) w (c*) : 1
1 2 p+2

Using (5.14), one can easily integrate Jl(O),Jo(O) to obtain

Y(O) = p+l
p(p+2) (p+3)

Using (5.15), one observes that

1
Y(c*) - 2

(p+2)

and

2
(5.16) Y(O) - Y(c*) = 2 > 0

p(p+2) (p+3)

Numerical evidence indicates that Y(c) is monotone and thus periodic

orbits are unique. (See Fig. 5.2.)

It would be interesting to obtain the bifurcation function for

T # 1 and also to determine numerically or analytically if there are

regions in parameter space where there is nonuniqueness of periodic orbits.

.1
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pm

- S -p2 IFig. 5. 2
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APPENDIX A

If B =2, then the normal form is

Xx 2x + (d x 3+ d 2xy 2

1 2 2 2 3
y y -Y x + (d x y +d y

where di, d 2, d 3 and d 4 are constants. In §2 and §3, we assumed that

d= 1, d2  d3  d4  0. As in [8] or [9], we will obtain a bifurca-

tion function G(pi,c,c) which for =0 is given by

(A2) G(ii,0,c) =I a2 ydx + K 2a 2  x+ a12 ydx

fa a1  2J xfyd 1 0 fa2

j 0+K 2J 2+ K JO

where X = cii, J1 J 2are defined by (3.2) and (3.3) and

K 2  3(d I - d 4) (d 2 - d 3)

(A3) d

4 4 4

To show (A2), we note that an orbit r of (Al) is periodic with

minimal period T > 0 if and only if

0 fr dt,

where

4 xy T

and (x,y) is the periodic solution r of (Al). By using X~ Vc

one obtains the following
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(A4) 2 G(11,O,c)

fT i(ix + dl x3 + d2 xy 2)dt
0

fT c~ 2y 3
- ( 3dxjy + d4y )dt

i
where (x(t),y(t)) is the solution of

x= 2xy
(AS)

1 2 2
4 -y

with energy H(x(t),y(t)) = c. Since all the terms in (A4) are given by

J 0 and J2 (see (3.2) and (3.3)) except the following expressions

-- y3idt =a dx
2 0  a1

and
1ifT x2. 1d fa2 y3df- y dxf- xy ydt = - -- a

we will show that

f y 3dx

can be expressed in terms of J0 and J2"

By (AS),

2xy - 2
dx x y
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Integrating by parts,

a ya
2 y dx

f 2- 3xy 
2  L dx

--3 a 2 Y_ x2 y2)dx

-3 J -3J
40

This gives (A2) and (A3).

If K # 0, then by Theorem 3.1 we have a unique asymptotically

stable limit cycle of (Al) for appropriate values of (X,c) # (0,0).

K (' I -
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APPENDIX B

If B # 2, the normal form is given by
= Xx + Bxy + c(dIX3 4 d2xy2

1 2 2 2 3
y T-x - y + e(dx y +d4y)

where d,, d2, d3 and d4 are constants. Changing time scales, we

write (Cl) as

x2)x + Bxy + e(dX 3 + d2 xy 2 )I

(C2) 2 2 2 3

= X 4 - X - y + E(d3x y + d4y A

Let

B r- x~ x q+l 2 -xq+3 -

q4 l+B j

where l+q = 2/B. Using (C2), it follows that

dH - q+l + 3 XY2)x q
at =yx X+eA + d 2xy

*2 3 q
- Cx(d3x y + d4y )x

As in Appendix A, the bifurcation function G(vi,e,c,B), c = X, which

for c = 0 is given by

G(p,O,c,B)

= (q+l)IJ0 +K + K OJ ,

where

K2 = (q+3)d - (q+l)d2 + d3 - Sd4

K0 = (d2 (q~l) + 3d4 )/4

and J and J2 are defined in 54. This shows that there is no loss

of generality by working with equation (4.1).

Iz

I , , "'" ... - i i 1: : '' --
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